DESIGN OF STEEL CONCRETE COMPOSITE STRUCTURE AND ITS COMPARISION WITH RCC STRUCTURE

Saurabh Hemant Bhoir

PG Student, Department of Structural Engineering, Sanjivani College of Engineering, Kopargaon

Abstract - Steel Concrete Composite Structures are becoming popular in India in current trends of changing construction scenario whereby the general discussion on technical aspects are far behind being new in Indian industry at wide scale. Steel-concrete composite structure is the steel section encased in concrete for columns and the concrete slab or profiled deck slab is connected to the steel beam with the help of mechanical shear connectors so that they act as a single unit. Steel-concrete composite with Reinforced cement concrete options are considered for comparative study of G+4 storey residential building which is situated in earthquake zone III and for earthquake loading, the provisions of IS:1893(Part1)-2002 is considered by Equivalent Static Method of Analysis. For modeling of Composite & R.C.C. structures ETABS is used

Key Words:

1.INTRODUCTION

In India reinforced concrete members are mostly used in the framing system for most of the buildings since this is the most convenient & economic system for low-rise buildings. However, for medium to high-rise buildings this type of structure is no longer economic because of increased dead load, less stiffness, span restriction and hazardous formwork. Steel concrete composite frame system can provide an effective and economic solution to most of these problems in medium to high-rise buildings. This paper includes the Comparative study of R.C.C. with Composite (G+4) Storey building which further includes the details of time period, storey drift,deflections, bending moments in x & y direction, axial force and shear force in columns & beams. The main objectives of the study are

To provide a brief description to various components of steel concrete framing system for buildings.

To investigate major parameters like, time, seismic response of steel-concrete composite frames over traditional reinforced concrete frames and steel frames for building structures.

1.1 Elements of composite construction

1. Composite beam, slab & shear connectors

A steel concrete composite beam consists of a steel beam, over which a reinforced concrete slab is cast with shear connectors. The composite action reduces the beam depth. Rolled steel sections themselves are found adequate frequently for buildings and built up girders are generally unnecessary. The composite beam can also be constructed with profiled sheeting with concrete topping or with cast in place or precast reinforced concrete slab.

2. Composite Column

A steel – concrete composite column is conventionally a compression member in which the steel element is a structural steel section. There are three types of composite columns used in practice which are Concrete Encased, Concrete filled, Battered Section.

3. Shear Connectors

Shear connections are essential for steel concrete construction as they integrate the compression capacity of supported concrete slab with supporting steel beams / girders to improve the load carrying capacity as well as overall rigidity. Therefore, mechanical shear connectors are required at the steel-concrete interface. These connectors are designed to

(a) Transmit longitudinal shear along the interface

(b) Prevent separation of steel beam and concrete slab at the interface.

2. MODELING AND ANALYSIS

The building considered here is a commercial building. The plan dimension is 30m x 24m. The study is carried out on the same building plan for both R.C.C and Composite construction. The floor plans were divided into five by six bays in such a way that center to center distance between two grids is 6 meters by 4 meters respectively as shown in Figure 2. The basic loading on both types of structures are kept same.

Table	-1:	Data for	anal	ysis	for	RCC	structure	and
Compo	osite s	structure						
		0		1.0				

Structural Details		
Tune of Structure	Multi-Storey Rigid Jointed RC	
Type of Structure	Frame Structucture	
No. of Storey	G+3 Storey	
Floor to Floor Height	3.25 meter	

Plinth Level	1.25 meter above Ground Level
Surrounding Location of Structure	Plain Terrain
Type of Soil on which Structure is rest	Medium Soil (Poorly Graded Sand: Stiff Soil)
Safe Bearing Capacity of Soil	400 kN/m2

Checklist of process used in detailed design of composite structure is guided as per the INSDAG Resource and general design of building principles.

Fig1: Typical Floor Plan

Fig -4: Story Displacement composite

Table -2:	Data for analysis	for	RCC	structure	and
Composite	structure				

Structural Details					
Seismic Zone	III				
Zone Factor (Z)	0.16				
Site Type	II for Medium Soil as per Table 4 of IS 1893 (Part 1): 2016				
Importance Factor (I)	1.2 as per Cl.7.2.3 and Table 8 of IS 1893 (Part 1): 2016				
System	SMRF (Special Moment Resisting Frame)				
Response Reduction Factor (R)	5 as per Cl.7.2.6 and Table 9 of IS 1893 (Part 1): 2016				
Percentage of Imposed Load to be Considered in Seismic Weight	25% for LL is up to 3 kN/m2 as per Cl.7.3.1 and Table 10 of IS 1893 (Part 1): 2016				

Checklist

Step 1:	Enter Basic Input Data; Define Grid and Story : Data			
	Set Design Codes			
	Define Grid Data			
	Define Story Data			
	Set Units of Length, Force and Acceleration			
	Save the File			
Step 2:	Define Material Properties			
	Define Concrete Properties as per Grade of			
	Concrete			
	Define Rebar Properties as per Grade of Steel			
	Define Reinforcement Bar Sizes as per requirements			

Step 3:	Define Section Properties		Define Seismic along X-Direction for ELX
	Define Beams		Define Seismic along X-Direction + 0.05
	Define Columns		Eccentricty for ELX+0.05e
			Define Seismic along X-Direction - 0.05
	Define Slabs		Eccentricity for ELX-0.05e
	Note: Enter correct properties of materials, cover,		Define Seismic along Y-Direction
	modifiers w.r.t. type of section		Define Seismic along Y-Direction + 0.05
Step 4:	Define Diaphragms		Eccentricity for ELY+0.05e
	Define Diaphragm for all Floors		Define Seismic along Y-Direction - 0.05
Step 5:	Check Snap Options		Eccentricity for ELY-0.05e
			Define Mass Source for Seismic Weight
	Draw > Snap Options > Select required Snap Options		Calculations
0		Step 10:	Set Load Cases
Step 6:	Draw the Structure		Check the Load Cases as per Load Pattern
	Draw Columns		
	Draw Beams	Step 11:	Assign Super-Imposed Dead Loads
	Draw Slabs		Assign SIDL
		Step 12:	Assign Live Loads
	Draw Staircase		Assign 11
Step 7:	Assign Conditions to Model		
	Assign Support Conditions		Set Live Load Reduction Factors
	Assign Releases to Beams	Step 13:	Define Load Combinations and Envelope
			Define Load Combinations as per Codal Provisions
	Assign Diaphragms		Define Envelope for Design Load Combination
Step 8:	Check Model for any Modeling Error		and Service Load Combination
	Analyze > Check Model	Step 14:	Define Analysis Ontions
	Note: Fix the Error if Any	5100 14.	
			Assign Meshing
Step 9:	Define Load Pattern for Load Cases and Mass		Check Model Again
	Source for seisinic weight		Auto Relabel All
	Define Dead for DL		Chack Active Degree of Freedom
	Define Super Dead for SIDL		Check Active Degree of Freedom
	Define Live for LL		Set Load Cases to Run
	Define Wind in X-Direction for WLX		Set Advanced SAPfire options
		Step 15:	Analyse the Structure and Check the Behaviour
	Define Wind in Y-Direction for WLY		Analyse the Model by Run Analysis
	'		Analyse the model by Run Analysis

Check Analysis Run Log to check that Model does not run into Instaility	reli bee	ability to th n made to co
Check Storey Drift Limitation as per Cl.7.11.1.1 of IS 1893 (Part 1) : 2016	RE	FERENCES
Check Torsional Irregularity as per Cl.7.1 and Table 5 of IS 1893 (Part 1) : 2016	[1] [2]	Buick Davis Backwell Pr Kamal B,
Check for Lateral Sway as per Cl.20.5 of IS 456 : 2000		Technology e-ISSN: 239
Note: If checks are not compliant with codal provisions then go to Step 2, 3 and 6	[3]	Mahesh S ANALYSIS COMPOSITI Journal Technology
Design the Structure	[4]	Sahal Must multi-store
Revise the Preference		Composite Engineering 07 July 20
Perform Design Check for all members by Verify all members Passed	[5]	Mahesh Sur MULTISTO STRUCTUR 2014
Verify Analysis vs Design Section	[6]	Abdul Qah Composite
Note: If any member is failing in Design, Try changing Design Section		of Enginee Issue: 12 0072
Unlock Model > Chanaed Section Size > Repeat Step 14		
	 Check Analysis Run Log to check that Model does not run into Instaility Check Storey Drift Limitation as per Cl.7.11.1.1 of IS 1893 (Part 1) : 2016 Check Torsional Irregularity as per Cl.7.1 and Table 5 of IS 1893 (Part 1) : 2016 Check for Lateral Sway as per Cl.20.5 of IS 456 : 2000 Note: If checks are not compliant with codal provisions then go to Step 2, 3 and 6 Design the Structure Revise the Preference Select Design Combinations Perform Design Check for all members by Verify all members Passed Verify Analysis vs Design Section Note: If any member is failing in Design, Try changing Design Section 	Check Analysis Run Log to check that Model does not run into Instailityreli beeCheck Storey Drift Limitation as per Cl.7.11.1.1 of IS 1893 (Part 1) : 2016 RE Check Torsional Irregularity as per Cl.7.1 and Table 5 of IS 1893 (Part 1) : 2016[1]Check for Lateral Sway as per Cl.20.5 of IS 456 : 2000[2]Check for Lateral Sway as per Cl.20.5 of IS 456 : 2000[3] Note: If checks are not compliant with codal provisions then go to Step 2, 3 and 6[4]Revise the Preference[4]Select Design Combinations[5]Perform Design Check for all members by Verify all members Passed[6]Note: If any member is failing in Design, Try changing Design Section[6]

The explained 3D building model is analyzed using Equivalent Static Method. The buildings models are analyzed by using ETABS software. In composite structure the beam is modeled as composite beam element and column is modeled as RCC beam element and shear wall is modeled as RCC plate element. In RCC structure the beam and column is modeled as RCC beam element and shear wall is modeled as RCC plate element. The different parameters such as node displacement, maximum shear force, axial force and maximum bending moment, Time period were studied for the models. The dead load and live load are considered as per IS-875(part 1 &2) and wind load is considered as per IS-875(part 3).For earthquake loading IS: 1893 (Part1) is used.

3. CONCLUSIONS

Although the standard codal provisions are absent but still using EURO Codes as referance and resources primarily by INSDAG and effort of Buick davison on development of Steel Design Manual. An successful attept to analysis of steel concrete composite structure is being made and using softwares to establish its validity and reliability to the process is being described. Efforts have been made to cover the codal provisions at most possible

- [1] Buick Davison, Ghra Owens "Steel Designers Manual," Backwell Publishing, Dec. 2003, edi 06,
- [2] Kamal B, "DESIGN OF COMPOSITE DECK SLAB", International Research Journal of Engineering and Technology (IRJET)Volume: 03 Issue: 05 | May-2016 e-ISSN: 2395 -0056 p-ISSN: 2395-0072
- [3] Mahesh Suresh Kumawat, "STATIC &DYNAMIC ANALYSIS OF MULTISTORY BUILDING USING COMPOSITE STRUCTURE," JIJRET: International Journal of Research in Engineering and TechnologyeISSN: 2319-1163 | pISSN: 2321-7308
- [4] Sahal Mustufabhai Dhapa, "Comparison of Behavior of multi-storey building with RCC Column and Composite Column" International Research Journal of Engineering and Technology (IRJET)Volume: 08 Issue: 07 | July 2021e-ISSN: 2395-0056 p-ISSN: 2395-0072
- [5] Mahesh Suresh Kumawat,"ANALYSIS AND DESIGN OF MULTISTORY BUILDING USING COMPOSITE STRUCTURE", ISSN 2319 – 6009 Vol. 3, No. 2, May 2014
- [6] Abdul Qahir Darwish,"A Review on Steel Concrete Composite Structures", International Research Journal of Engineering and Technology (IRJET)Volume: 07 Issue: 12 | Dec 2020e-ISSN: 2395-0056 p-ISSN: 2395-0072